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Distributed systems

Cyber-physical systems: power grids, sensor networks.
Cloud centered devices: smartphones, wearable devices.
Autonomous vehicle systems: sensors, actuators, multi-vehicle coordination.
. . .
Goal: secure information processing over distributed systems.
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Two distributed schemes

Server/client model
Server coordinates the global and local

information exchange

Decentralized model
Agents exchange local information with direct

neighbors over a graph

Data are distributed over multiple agents due to privacy and scalability.
We focus on the decentralized model.

Flexible: no central server is required.
Less communication: communication with neighbors only.
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Decentralized optimization

f1

f2

f3. . .

fn

Consider a network of agent i = 1, . . . , n.
Agent i holds a local data distribution Di , on which we define

fi(x) := Eξi ∼Di ℓ(x, ξi).

for some loss function ℓ. Examples include: least-squares, logistic-regression,
neural networks.
Agents communicate over a graph to minimize f (x) := 1

n
∑n

i=1 fi(x).
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Decentralized SGD

For each agent i , at each iteration:
agent i holds a local decision variable x i ;
agent i computes a stochastic gradient with random noise ξi ,

gi(x i) = ∇fi(x i) + ξi ;

agent i employs some weight wij , wij > 0 if agent j is the neighbor of agent i ;
decentralized stochastic gradient descent (DSGD), for some stepsize α,

x+
i =

n∑
j=1

wijx i − αgi(x i).

Q: ξi is typically assumed to be well-behaved, what if it is adversarial?
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Gradient attacks

In DSGD:

x+
i =

n∑
j=1

wijx i − α
(

∇fi(x i) + ξi

)
︸ ︷︷ ︸

ξi can be arbitrarily adversarial

.

The local data distribution on some agents can be poisoned. Examples:
Empirical datasets: replacing labels or specific features of the data.
Streaming data: sensor measurement corruptions.
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Byzantine fault v.s. gradient attacks

Byzantine fault
Byzantine agents themselves deviate from the

predefined protocols

f1

f2

f3. . .

fn

Gradient attack
Data attack only manipulates local

functions

Agents under gradient attacks still follow predefined algorithmic protocol
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Algorithm development

Q: How to deal with adversarial noise ξi?

Main ideas:
Gradient clipping to control the adversarial noise level on attacked agents.
Variance reduction (VR) to approximate the true gradients on unattacked
agents.
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CLIP-VRG

Algorithm 0: CLIP-VRG
Input: αt , γt , ηt .
Initialization: x0

i = x0
j , ∀i , j ∈ [n].

for t = 0, . . . , T − 1 do
for agent i ∈ [n] in parallel do

Query stochastic gradient oracle that returns mt
i ;

Update vt
i =

{
mt

i , t = 0,

(1 − ηt−1)vt−1
i + ηt−1mt

i , t ≥ 1,
, (VR) ;

Compute k t
i =

{
1, ∥vt

i ∥ ≤ γt ,

γt ∥vt
i ∥

−1
, ∥vt

i ∥ > γt ,
(Gradient clipping);

Send xt
i − αtk t

i vt
i to all neighbors of agent i ;

Update xt+1
i =

∑n
j=1 wij

(
xt

j − αtk t
j vt

j
)
;

end
end
Output: {xT

i }i∈[n].
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Problem model

A subset [n]\N of agents receives malicious stochastic gradients, and we
minimize

∑
i∈N fi(x).

Unattacked fi ’s are convex and L-smooth, (1/|N |)
∑

i∈N fi is µ-strongly
convex. The stochastic gradient ∇fi(x i) + ξi on i ∈ N satisfies that

E[ξi | x i ] = 0, E
[
∥ξi∥2 | x i

]
≤ σ2 for some σ > 0.

Unattacked functions fi ’s share one common minimizer, but this minimizer is
not unique for any fi .
The fraction of attacked agents ρ = 1 − |N |/n < 1/(1 + L/µ).
The inter-agent communication graph is undirected and connected.
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CLIP-VRG

Unattacked agents have access to noisy gradient mt
i = ∇fi(xt

i ) + ξt
i , while

attacked ones receives arbitrary mt
i . For ηt = cη(t + φ)−τη , compute VR

based gradient estimator,

vt
i = (1 − ηt)vt−1

i + ηtmt
i .

Local clipped updates with decaying clipping threshold γt = cγ(t + φ)−τγ ,
stepsize αt = cα(t + φ)−τα ,

xt+ 1
2

i = xt
i − αtk t

i vt
i , k t

i := min
(
1, γt

∥∥vt
i
∥∥−1 )

.

Using a doubly stochastic and real symmetric weight matrix W with
|λ2(W )| ∈ [0, 1). Averaging with the iterates with neighbors,

xt+1
i =

n∑
j=1

wijx
t+ 1

2
j .
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Convergence

Theorem 1 (Yu and Kar 2023)

Under aforementioned assumptions, suppose that αt , γt , ηt ∈ (0, 1) are taken as
τη = 2(τα + τγ)/3, 2τγ < τα < min(1, 1 − τγ). Then, for all i ∈ [n], for every
0 < τ < min(τγ , (τα − 2τγ)/3), we have

P
(

lim
t→∞

(t + 1)τ
∥∥xt

i − x∗∥∥ = 0
)

= 1.

Corollary 2
We can take τα, τγ , τη in Theorem 1 to achieve that for any i ∈ [n], any ϵ with
0 < ϵ < 1/3,

P
(

lim
t→∞

(t + 1)1/3−ϵ
(
f (xt

i ) − f (x∗)
)

= 0
)

= 1.
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Discussions

Compared to Byzantine-robust case, we establish an exact convergence in a
general topology. (e.g., (Gupta, Doan, and Vaidya 2021); (Wu, Chen, and Ling 2023))

The assumption ρ < 1/(1 + L/µ) is tight in that we can find examples where
ρ = 1/(1 + L/µ) leads to the failure of CLIP-VRG.
Price: The best achievable rate O(t−1/3) is slower than the O(t−1) almost
sure rate for algorithms designed for non-adversarial scenarios.
The assumption that all functions share a common minimizer goes beyond
the independent and identically distributed (i.i.d.) setting.
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Proof sketch

The local iterate xt
i converges to the network average iterate

x̄t = (1/n)
∑

i∈[n] xt
i .

For regular agents N , the recursive estimator vt
i for the corresponding true

gradient ∇fi(xt
i ) is strongly consistent.

Case 1, if x̄t enters some contracting region, we show that x̄t would stay in
this region and converge to x∗ at the same sublinear rate as clipping
threshold γt .
Case 2, if x̄t never falls into case 1, then for each iteration t, we can lower
bound the set of clipping coefficients {k t

i : i ∈ N }, that leads the x̄t sequence
to be a time-varying contractive process with a controlled clipping bias.
Combing the rates of case 1 and case 2.
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Experiments: heterogeneous measurements
Suppose each agent has observations yt

i = Hiθ∗ + wt
i where wt

i is white noise.
We formulate an ℓ2 loss minimization problem over regular agents N ,

minimizex∈R625

∑
i∈N

Ewi ∥Hix − yi∥2
. (1)
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Figure: A 2d-grid network of agents with black agents have arbitrary adversarial measurements. Comparison of
the performance of DSGD. BRIDGE-M, SCClip, CLIP-VRG.
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Experiments: collaborative learning

Given the same datasets {θi , yi} for a binary classification task. Suppose
each agent solves the same empirical risk minimization problem to

ℓ(x, {θi , yi}i=1,...,n) = 1
n

n∑
i=1

ln
(
1 + e−x⊤θi yi

)
+ λ

2 ∥x∥2
2.

For example: classifying cats and dogs.
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Experiments: collaborative learning

A Random Geometric Graph of 100 Nodes
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Figure: An undirected random geometric graph of 100 agents with Fashion-MNIST dataset. Performance
comparison of DSGD, BRIDGE-M, SCClip, and CLIP-VRG under persistent gradient attacks; and DSGD
without attack as baseline.
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Experiments: collaborative learning

A Connected Cycle of 15 Nodes
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Figure: An connected cycle of 15 agents with a9a dataset. Performance comparison of DSGD, BRIDGE-K,
BRIDGE-M, BRIDGE-T, SCClip and CLIP-VRG under persistent gradient attacks.
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Future research

Extend the analysis to more heterogeneous case.
Improve the convergence rates in both adversarial (ρ > 0) and non-adverarial
case (ρ = 0).
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