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Distributed systems

Cyber-physical systems: power grids, sensor networks.
Cloud centered devices: smartphones, wearable devices.

Autonomous vehicle systems: sensors, actuators, multi-vehicle coordination.

Goal: secure information processing over distributed systems.
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Two distributed schemes
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Server/client model

53]

Server coordinates the global and local

information exchange

Decentralized model
Agents exchange local information with direct

neighbors over a graph

@ Data are distributed over multiple agents due to privacy and scalability.

@ We focus on the decentralized model.

o Flexible: no central server is required.
e Less communication: communication with neighbors only.
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Decentralized optimization

o Consider a network of agent i =1,...,n.
@ Agent i holds a local data distribution D;, on which we define

f,(X) = EE;NDfE(Xv fl)

for some loss function ¢. Examples include: least-squares, logistic-regression,

neural networks.
1

o Agents communicate over a graph to minimize f(x) := £ >7, fi(x).
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Decentralized SGD

For each agent i, at each iteration:
@ agent i holds a local decision variable x;;

@ agent i computes a stochastic gradient with random noise §;,
gi(x;)) =Vifi(x;)+&;

@ agent i employs some weight wj;, wy; > 0 if agent j is the neighbor of agent /;

o decentralized stochastic gradient descent (DSGD), for some stepsize «,

n
xi = Z wiix; — agi(x;).
j=1

Q: &; is typically assumed to be well-behaved, what if it is adversarial? )
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Gradient attacks

o In DSGD:

xi = Jz_n; WiiXj — (Vﬁ(xi) i £i)

&, can be arbitrarily adversarial

@ The local data distribution on some agents can be poisoned. Examples:

o Empirical datasets: replacing labels or specific features of the data.
o Streaming data: sensor measurement corruptions.
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Byzantine fault v.s. gradient attacks
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Byzantine fault Gradient attack
Byzantine agents themselves deviate from the Data attack only manipulates local
predefined protocols functions

Agents under gradient attacks still follow predefined algorithmic protocol
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Algorithm development

Q: How to deal with adversarial noise §;? J

Main ideas:
o Gradient clipping to control the adversarial noise level on attacked agents.

e Variance reduction (VR) to approximate the true gradients on unattacked
agents.
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CLIP-VRG

Algorithm 0: CLIP-VRG

Input: Oéta’Yt,Tlt
Initialization: x{ = x?,Vi,j € [n].

for

end

t=0,...,T—-1 do
for agent i € [n] in parallel do

Query stochastic gradient oracle that returns m;
t

t t=0
Update vi = M i1 " (VR);
(I —=ne1)vi ~ +nemamj, t>1,

1 t <
Compute k’-t = ’ =1 ||Vlt|| =Vt (

AellVil s> e
Send x{ — azkfv! to all neighbors of agent i;

Update x!™! = Sy Wy (x} — ackivt);

end

Output: {x]};c(q-

Gradient clipping);
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Problem model

A subset [n]\\V of agents receives malicious stochastic gradients, and we
minimize ;. fi(x).

o Unattacked f's are convex and L-smooth, (1/|N|) 3, fi is p-strongly
convex. The stochastic gradient Vf;(x;) + &; on i € N satisfies that

E[¢; | xi] =0, E[|[&]? | xi] < o for some o > 0.

@ Unattacked functions f;’s share one common minimizer, but this minimizer is
not unique for any f;.

@ The fraction of attacked agents p =1 — |N|/n < 1/(1+ L/p).
@ The inter-agent communication graph is undirected and connected.
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CLIP-VRG

o Unattacked agents have access to noisy gradient m! = V£(x!) + &, while
attacked ones receives arbitrary mf. For 1, = ¢, (t 4+ )~ ™, compute VR
based gradient estimator,

vi= (1= ne)vi !+ nem).

@ Local clipped updates with decaying clipping threshold v, = ¢, (t + )~ ™,
stepsize a; = co(t + @)™,

t+3
x; °

= xf — kvt k= min (13 [vi]| )

@ Using a doubly stochastic and real symmetric weight matrix W with
[A2(W)| € [0,1). Averaging with the iterates with neighbors,

l
Xttt = E W,JX ta
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Convergence

Theorem 1 (Yu and Kar 2023)

Under aforementioned assumptions, suppose that o, 7e,n: € (0,1) are taken as
Ty = 2(Ta +74)/3,27y < 7o < min(1,1 —7,). Then, for all i € [n], for every
0 < 7 < min(7y, (7o — 27)/3), we have

=0) =1,

We can take 7,7y, T, in Theorem 1 to achieve that for any i € [n], any € with
0<e<1/3

P (tll{’r;o(t +1)7 || xf — x*

IP( lim (t +1)Y3(F(x!) — £(x")) = o) =1

t—o0
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Discussions

Compared to Byzantine-robust case, we establish an exact convergence in a
general topology. (e.g., (Gupta, Doan, and Vaidya 2021); (Wu, Chen, and Ling 2023))

The assumption p < 1/(1 + L/u) is tight in that we can find examples where
p=1/(1+ L/u) leads to the failure of CLIP-VRG.

o Price: The best achievable rate O(t/3) is slower than the O(t~!) almost
sure rate for algorithms designed for non-adversarial scenarios.

The assumption that all functions share a common minimizer goes beyond
the independent and identically distributed (i.i.d.) setting.
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Proof sketch

@ The local iterate x! converges to the network average iterate
X = (1/n) Y e X!
i€ln] i+
o For regular agents NV, the recursive estimator v! for the corresponding true
gradient Vf(x!) is strongly consistent.

o Case 1, if x* enters some contracting region, we show that x* would stay in
this region and converge to x* at the same sublinear rate as clipping
threshold ~;.

o Case 2, if x* never falls into case 1, then for each iteration t, we can lower
bound the set of clipping coefficients {k} : i € N}, that leads the X' sequence
to be a time-varying contractive process with a controlled clipping bias.

@ Combing the rates of case 1 and case 2.
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Experiments: heterogeneous measurements

Suppose each agent has observations y! = H;0.. + w! where w! is white noise.
We formulate an ¢, loss minimization problem over regular agents N/,

minimize,cgezs Z Ew, [|Hix — yi|*. (1)
ieN
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Figure: A 2d-grid network of agents with black agents have arbitrary adversarial measurements. Comparison of
the performance of DSGD. BRIDGE-M, SCCLip, CLIP-VRG.
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Experiments: collaborative learning

o Given the same datasets {60, y;} for a binary classification task. Suppose
each agent solves the same empirical risk minimization problem to

1 e A
(x,{0i, yi}i=1,..n) = n Z In(1+e* e,y,) + §||x||§
i=1

@ For example: classifying cats and dogs.
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Experiments: collaborative learning
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Figure: An undirected random geometric graph of 100 agents with Fashion-MNIST dataset. Performance
comparison of DSGD, BRIDGE-M, SCCLiP, and CLIP-VRG under persistent gradient attacks; and DSGD
without attack as baseline.
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Experiments: collaborative learning
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Figure: An connected cycle of 15 agents with aQa dataset. Performance comparison of DSGD, BRIDGE-K,
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BRIDGE-M, BRIDGE-T, SCCLip and CLIP-VRG under persistent gradient attacks.
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Future research

@ Extend the analysis to more heterogeneous case.

@ Improve the convergence rates in both adversarial (p > 0) and non-adverarial
case (p=0).
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