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Background
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Distributed computing

Consider a distributed system where data are distributed across networked agents.

Majority vote.
Computing average, median, quantiles.
Distributed data-driven optimization.
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Distributed setup

Figure: Distributed setups with central processor.1

Requires a computation coordinator.
The coordinator may be a communication bottleneck.

1Zhixiong Yang, Arpita Gang, and Waheed U Bajwa. “Adversary-resilient distributed and decentralized statistical inference and machine learning: An
overview of recent advances under the Byzantine threat model”. In: IEEE Signal Processing Magazine 37.3 (2020), pp. 146–159.
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Decentralized setup

Figure: Decentralized setup.2

Local computations and communications.
No central compute node.
Less communication per node.
Applications in sensor networks, unmanned aerial vehicles.

2Yuan Chen, Soummya Kar, and José MF Moura. “The internet of things: Secure distributed inference”. In: IEEE Signal Processing Magazine 35.5
(2018), pp. 64–75.
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Consensus

Consensus in decentralized setup:

Consensus
Suppose each node n holds a decision variable x t

n at time t. All nodes reach
consensus if for any m 6= n, lim

t→∞
|x t

n − x t
m| = 0.

Average consensus
Suppose each node n holds some initial state θn, and holds a local estimate x t

n for
θ̄ := N−1∑N

n=1 θn at time t. All nodes reach average consensus if for any
n ∈ [N], lim

t→∞
x t

n = θ̄.
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Average vs median

Average is vulnerable to outliers.

Figure: One outlier can dominate the average

Median is more robust to outliers3.

m1 m2 m3 m4 m5 average median
record 1 6.27 6.34 6.25 6.31 6.28 6.29 6.28
record 1 6.27 6.34 6.25 63.1 6.28 17.65 6.28

3Peter J Rousseeuw and Mia Hubert. “Robust statistics for outlier detection”. In: Wiley interdisciplinary reviews: Data mining and knowledge discovery
1.1 (2011), pp. 73–79.
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Median consensus

L1 vs L2 minimization
Given a set of scalars θ1, . . . , θN ,

mean: argmin
x∈R

1
N

N∑
n=1

(x − θn)2,

median: argmin
x∈R

1
N

N∑
n=1
|x − θn| .

Median consensus
Suppose each node n holds some initial state θn, and holds a local estimate x t

n for
median(θ1, . . . , θN). Median consensus is achieved if all nodes reach consensus
and lim

t→∞
x t

n ∈ median(θ1, . . . , θN).
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Application: a subCULTron project

A decentralized multi-robot systems.

Figure: aMussels (left), aFish (middle) and aPad (right).4

Underwater swarm: 100 aMussels, 10 aFish and 5 aPads.
Goal: measuring environment parameters such as oxygen or turbidity.
Challenges: sensors prone to faults/errors/outliers.

4Goran Vasiljević et al. “Dynamic Median Consensus for Marine Multi-Robot Systems Using Acoustic Communication”. In: IEEE Robotics and
Automation Letters 5.4 (2020), pp. 5299–5306.
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Problem setup
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Dynamic median consensus

Goal: dynamic median consensus
Let Θ be the medians of a set of distinct numbers {θn}n∈[N]. Suppose each node
n maintains a local estimate x t

n , the goal is for all nodes to reach median
consensus, i.e., reach consensus and lim

t→∞
x t

n ∈ Θ, with

local dynamic observations on θn,
local communications in random networks.
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Dynamic observations

Node n observes that
θt

n = θn + v t
n + w t

n ,

where
v t

n is some decaying bias,
w t

n is some white noise.

Assumptions
For every n ∈ [N], |v t

n | ≤ v0(t + 1)−δ a.s. for some positive constants δ, v0.
Each w t

n satisfies that E (w t
n) = 0,Var(w t

n) <∞.
{w t

n}n∈[N],t≥0 is i.i.d. distributed over time and across agents.
{v t

n}, {w t
n} are mutually independent.
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Random networks

Time-varying, undirected, simple random graph G t = ([N],E t).

Ωt
n = {m : (m, n) ∈ E t};

Dt [n, n] =
∣∣Ωt

n
∣∣ ,Dt [m, n] = 0 if m 6= n;

At [m, n] = 1 if (m, n) ∈ E t , otherwise 0;
Lt = Dt − At .

We assume {G t} is connected on average.5

Assumption
We assume {Lt} is an i.i.d. sequence with λ2(E(Lt)) > 0.

5Soummya Kar, José MF Moura, and Kavita Ramanan. “Distributed parameter estimation in sensor networks: Nonlinear observation models and
imperfect communication”. In: IEEE Transactions on Information Theory 58.6 (2012), pp. 3575–3605.
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Random networks: example

A simple connected and undirected network G = ([N],E ) where each link in E has
dropout probability in [0, 1).

Figure: A simple network with random dropout
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Contributions

Prior works consider determinstically bounded observation noises6.
Prior works require the network to be connected all the time7.
We relax these assumptions, provide a consensus+innovations type algorithm
with variance reduction and clipped innovations, and show almost sure
convergence in sublinear rate.

6Zohreh Al Zahra Sanai Dashti, Carla Seatzu, and Mauro Franceschelli. “Dynamic consensus on the median value in open multi-agent systems”. In:
2019 IEEE 58th Conference on Decision and Control (CDC). IEEE. 2019, pp. 3691–3697.

7Alessandro Pilloni et al. “Robust distributed consensus on the median value for networks of heterogeneously perturbed agents”. In: 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE. 2016, pp. 6952–6957.
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DMED Algorithm
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Consensus+innovations

A distributed inference framework. For instance,

x t+1
n = x t

n − βt
∑
l∈Ωt

n

(x t
n − x t

l )

︸ ︷︷ ︸
consensus

+αtK t
n [H>n R−1

n (y t
n − Hnx t

n)]︸ ︷︷ ︸
innovations

is a consensus+innovations8 type distributed linear estimator, where K t
n ,Hn,Rn

are local variables only known to agent n.

8Soummya Kar and José MF Moura. “Consensus+ innovations distributed inference over networks: cooperation and sensing in networked systems”. In:
IEEE Signal Processing Magazine 30.3 (2013), pp. 99–109.
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Variance reduction

Recall that θt
n = θn + v t

n + w t
n , where |v t

n | ≤ v0(t + 1)−δ a.s. and w t
n is a white

noise. Let θ̄0
n = θ0

n and choose ηt ,

θ̄t+1
n ← (1− ηt)θ̄t

n + ηtθ
t
n.

Why:
if v t

n = 0, take ηt = 1/(t + 1), use LLN,
if w t

n = 0, take θ̄t
n = θt

n.

Local convergence
Let ηt = η0(t + 1)−τ4 . If δ ≥ 1, take any 0 < τ4 < 1, otherwise take δ ≤ τ4 < 1.
Then, for every 0 < ε ≤ τ4, we have

lim
t→∞

(t + 1)τ4−ε
∣∣θ̄t

n − θn
∣∣2 = 0, a.s.
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Clipped innovations

Consensus+Clipped Innovations,

x t+1
n ← x t

n − βt
∑

m∈Ωt
n

(x t
n − x t

m)− αtclip(x t
n − θ̄t

n, γt),

where

clip(x , γt) =
{

(x/ |x |)γt , |x | ≥ γt ,

x otherwise.

Motivation:
Global objective is minθ

∑
n∈[N] |θ − θn|. Local cost function |x − θn| with

subgradient sign(x − θn).
αtclip(x t

n − θ̄t
n, γt) = αtγtsign(x t

n − θ̄t
n) or αt(x t

n − θ̄t
n).

Clipping operation ”smooth” the algorithm behavior when x t
n is close to Θ.

19 / 30



DMED Algorithm

Algorithm 1: Distributed Median Estimator for Dynamic observations

Input: {αt}t≥0, {βt}t≥0, {γt}t≥0, {ηt}t≥0;
Initialization: Set arbitrary x0

n and θ̄0
n = θ0

n for all n ∈ [N];
for t = 0, . . . ,T do

for n = 1, . . . ,N in parallel do
VR: θ̄t+1

n ← (1− ηt)θ̄t
n + ηtθ

t
n;

C+CI: x t+1
n ← x t

n − βt
∑

m∈Ωt
n
(x t

n − x t
n)− αtclip(x t

n − θ̄t
n, γt)

end
end
Output: {xT

n }n∈[N]
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Convergence

Define dist(x t
n ,Θ) = minθ∈Θ |x t

n − θ|.

Asymptotic convergence
Let αt = α0(t + 1)−τ1 , βt = β0(t + 1)−τ2 , γt = γ0(t + 1)−τ3 . Choose
0 < τ2 < τ1 < 1, τ3 < min{1− τ1, τ4/2}. Then, we have for all n ∈ [N],
limt→∞(t + 1)τ3 dist(x t

n ,Θ) = 0 a.s.

Take τ1 = 0.5, τ2 = 0.3, τ3 = 0.4, τ4 = 0.9, we obtain O((t + 1)−0.4)
convergence rate.
Consensus error decays faster at O

(
(t + 1)−(τ1−τ2+τ3)) a.s.

The theorem holds for every τ3 < min{1− τ1, τ4/2}.
Since 0 < τ4 < 1, best guaranteed rate is near O(

√
t).
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Experiments: networks

Two geometric random graphs with 40 nodes.

Figure: Graph 1 Figure: Graph 2
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Experiments: τ1, τ4

Data setup: Graph 2 with dropout 0.1. θn = 5n, vn = 50/(t + 1),w t
n ∼

N (0, 4), αt = (t + 1)−τ1 , βt = 0.1(t + 1)−τ2 , γt = 20(t + 1)−τ3 , ηt = 10(t + 1)−τ4 .
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Figure: Tuning τ1 and τ4.
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Experiments: τ2, τ3

Fix (variance reduction rate) τ4 = 0.9.
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Figure: Tuning τ2.
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Figure: Tuning τ3.
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Experiments: clipping vs sign

Fix τ4 = 0.9, and replace αtclip(x t
n − θ̄t

n, γt) with αtγtsign(x t
n − θ̄t

n).
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Figure: Clipped innovations vs signed innovations
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Experiments: connectivity

Experiments on networks with different connectivity, λ2(L1) ≈ 1.8, λ2(L2) ≈ 7.2.
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Figure: Experiments in different connectivities
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Experiments: summary

As suggested by the theorem: τ1, τ4 determines the convergence rates.
Empirical findings: convergence rates are affected by τ2, and better
connectivity accelerates convergence.
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Discussions
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Discussions

Conclusions:
Proved median consensus for dynamic observations in random networks.
Demonstrated effectiveness and illustrated parameters on synthetic data.

Directions:
Understand the difference between clipped and signed innovations.
Understand how the connectivity affects the convergence rate.
Can we use this algorithm to robustify other decentralized algorithms?
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Questions, comments, suggestions?
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