Dynamic Median Consensus over Random Networks

Shuhua Yu, Yuan Chen, Soummya Kar

Electrical and Computer Engineering, Carnegie Mellon University

Dec 16th, 2021

Background

Distributed computing

Consider a distributed system where data are distributed across networked agents.

- Majority vote.
- Computing average, median, quantiles.
- Distributed data-driven optimization.

Distributed setup

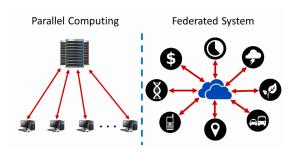


Figure: Distributed setups with central processor.¹

- Requires a computation coordinator.
- The coordinator may be a communication bottleneck.

¹Zhixiong Yang, Arpita Gang, and Waheed U Bajwa. "Adversary-resilient distributed and decentralized statistical inference and machine learning: An overview of recent advances under the Byzantine threat model". In: IEEE Signal Processing Magazine 37:3 (2020) pp. 146=159.

Decentralized setup

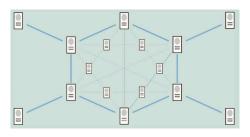


Figure: Decentralized setup.²

- Local computations and communications.
- No central compute node.
- Less communication per node.
- Applications in sensor networks, unmanned aerial vehicles.

²Yuan Chen, Soummya Kar, and José MF Moura. "The internet of things: Secure distributed inference". In: IEEE Signal Processing Magazine 35.5 (2018), pp. 64–75.

Consensus

Consensus in decentralized setup:

Consensus

Suppose each node n holds a decision variable x_n^t at time t. All nodes reach consensus if for any $m \neq n$, $\lim_{t \to \infty} |x_n^t - x_m^t| = 0$.

Average consensus

Suppose each node n holds some initial state θ_n , and holds a local estimate x_n^t for $\bar{\theta}:=N^{-1}\sum_{n=1}^N\theta_n$ at time t. All nodes reach average consensus if for any $n\in[N]$, $\lim_{t\to\infty}x_n^t=\bar{\theta}$.

Average vs median

Average is vulnerable to outliers.

Figure: One outlier can dominate the average

Median is more robust to outliers³.

	m1	m2	m3	m4	m5	average	median
record 1	6.27	6.34	6.25	6.31	6.28	6.29	6.28
record 1	6.27	6.34	6.25	63.1	6.28	17.65	6.28

³Peter J Rousseeuw and Mia Hubert. "Robust statistics for outlier detection". In: Wiley interdisciplinary reviews: Data mining and knowledge discovery 1.1 (2011), pp. 73–79.

Median consensus

L_1 vs L_2 minimization

Given a set of scalars $\theta_1, \ldots, \theta_N$,

mean:
$$\underset{x \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} (x - \theta_n)^2$$
,

median:
$$\underset{x \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} |x - \theta_n|$$
.

Median consensus

Suppose each node n holds some initial state θ_n , and holds a local estimate x_n^t for median $(\theta_1,\ldots,\theta_N)$. Median consensus is achieved if all nodes reach consensus and $\lim_n x_n^t \in \operatorname{median}(\theta_1,\ldots,\theta_N)$.

Application: a subCULTron project

A decentralized multi-robot systems.

Figure: aMussels (left), aFish (middle) and aPad (right).⁴

- Underwater swarm: 100 aMussels, 10 aFish and 5 aPads.
- Goal: measuring environment parameters such as oxygen or turbidity.
- Challenges: sensors prone to faults/errors/outliers.

Problem setup

Dynamic median consensus

Goal: dynamic median consensus

Let Θ be the medians of a set of distinct numbers $\{\theta_n\}_{n\in[N]}$. Suppose each node n maintains a local estimate x_n^t , the goal is for all nodes to reach median consensus, i.e., reach consensus and $\lim_{t\to\infty} x_n^t \in \Theta$, with

- local dynamic observations on θ_n ,
- local communications in random networks.

Dynamic observations

Node *n* observes that

$$\theta_n^t = \theta_n + v_n^t + w_n^t,$$

where

- v_n^t is some decaying bias,
- w_n^t is some white noise.

Assumptions

- For every $n \in [N]$, $|v_n^t| \le v_0(t+1)^{-\delta}$ a.s. for some positive constants δ, v_0 .
- Each w_n^t satisfies that $\mathbb{E}(w_n^t) = 0$, $\operatorname{Var}(w_n^t) < \infty$.
- $\{w_n^t\}_{n\in[N],t\geq 0}$ is i.i.d. distributed over time and across agents.
- $\{v_n^t\}, \{w_n^t\}$ are mutually independent.

Random networks

Time-varying, undirected, simple random graph $G^t = ([N], E^t)$.

$$\Omega_n^t = \{m : (m, n) \in E^t\};$$
 $D^t[n, n] = \left|\Omega_n^t\right|, D^t[m, n] = 0 \text{ if } m \neq n;$
 $A^t[m, n] = 1 \text{ if } (m, n) \in E^t, \text{ otherwise 0};$
 $L^t = D^t - A^t.$

We assume $\{G^t\}$ is connected on average.⁵

Assumption

We assume $\{L^t\}$ is an i.i.d. sequence with $\lambda_2(\mathbb{E}(L^t)) > 0$.

Random networks: example

A simple connected and undirected network G = ([N], E) where each link in E has dropout probability in [0, 1).

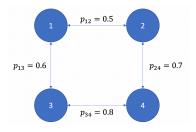


Figure: A simple network with random dropout

Contributions

- Prior works consider determinatically bounded observation noises⁶.
- Prior works require the network to be connected all the time⁷.
- We relax these assumptions, provide a consensus+innovations type algorithm with variance reduction and clipped innovations, and show almost sure convergence in sublinear rate.

⁶Zohreh Al Zahra Sanai Dashti, Carla Seatzu, and Mauro Franceschelli. "Dynamic consensus on the median value in open multi-agent systems". In: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE. 2019, pp. 3691–3697.

⁷Alessandro Pilloni et al. "Robust distributed consensus on the median value for networks of heterogeneously perturbed agents". In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE. 2016, pp. 6952–6957.

DMED Algorithm

Consensus+innovations

A distributed inference framework. For instance,

$$\boldsymbol{x}_n^{t+1} = \underbrace{\boldsymbol{x}_n^t - \beta_t \sum_{l \in \Omega_n^t} (\boldsymbol{x}_n^t - \boldsymbol{x}_l^t)}_{\text{consensus}} + \underbrace{\alpha_t K_n^t [\boldsymbol{H}_n^\top \boldsymbol{R}_n^{-1} (\boldsymbol{y}_n^t - \boldsymbol{H}_n \boldsymbol{x}_n^t)]}_{\text{innovations}}$$

is a consensus+innovations⁸ type distributed linear estimator, where K_n^t , H_n , R_n are local variables only known to agent n.

17 / 30

⁸ Soummya Kar and José MF Moura. "Consensus+ innovations distributed inference over networks: cooperation and sensing in networked systems". In: IEEE Signal Processing Magazine 30.3 (2013), pp. 99–109.

Variance reduction

Recall that $\theta_n^t = \theta_n + v_n^t + w_n^t$, where $|v_n^t| \le v_0(t+1)^{-\delta}$ a.s. and w_n^t is a white noise. Let $\bar{\theta}_n^0 = \theta_n^0$ and choose η_t ,

$$\bar{\theta}_n^{t+1} \leftarrow (1 - \eta_t) \bar{\theta}_n^t + \eta_t \theta_n^t.$$

Why:

- if $v_n^t = 0$, take $\eta_t = 1/(t+1)$, use LLN,
- if $w_n^t = 0$, take $\bar{\theta}_n^t = \theta_n^t$.

Local convergence

Let $\eta_t = \eta_0 (t+1)^{-\tau_4}$. If $\delta \ge 1$, take any $0 < \tau_4 < 1$, otherwise take $\delta \le \tau_4 < 1$. Then, for every $0 < \epsilon < \tau_4$, we have

$$\lim_{t\to\infty} (t+1)^{\tau_4-\epsilon} \left| \bar{\theta}_n^t - \theta_n \right|^2 = 0, \text{ a.s.}$$

Clipped innovations

Consensus+Clipped Innovations,

$$\mathbf{x}_{n}^{t+1} \leftarrow \mathbf{x}_{n}^{t} - \beta_{t} \sum_{m \in \Omega_{n}^{t}} (\mathbf{x}_{n}^{t} - \mathbf{x}_{m}^{t}) - \alpha_{t} \mathrm{clip} (\mathbf{x}_{n}^{t} - \overline{\theta}_{n}^{t}, \gamma_{t}),$$

where

$$clip(x, \gamma_t) = \begin{cases} (x/|x|)\gamma_t, & |x| \ge \gamma_t, \\ x & \text{otherwise.} \end{cases}$$

Motivation:

- Global objective is $\min_{\theta} \sum_{n \in [N]} |\theta \theta_n|$. Local cost function $|x \theta_n|$ with subgradient $\operatorname{sign}(x \theta_n)$.
- $\alpha_t \text{clip}(x_n^t \bar{\theta}_n^t, \gamma_t) = \alpha_t \gamma_t \text{sign}(x_n^t \bar{\theta}_n^t) \text{ or } \alpha_t(x_n^t \bar{\theta}_n^t).$
- Clipping operation "smooth" the algorithm behavior when x_n^t is close to Θ .

DMED Algorithm

Algorithm 1: Distributed Median Estimator for Dynamic observations

```
 \begin{aligned} & \textbf{Input: } \{\alpha_t\}_{t \geq 0}, \{\beta_t\}_{t \geq 0}, \{\gamma_t\}_{t \geq 0}; \\ & \textbf{Initialization: Set arbitrary } x_n^0 \text{ and } \bar{\theta}_n^0 = \theta_n^0 \text{ for all } n \in [N]; \\ & \textbf{for } t = 0, \dots, T \text{ do} \\ & | \textbf{ for } n = 1, \dots, N \text{ in parallel do} \\ & | \textbf{ VR: } \bar{\theta}_n^{t+1} \leftarrow (1 - \eta_t) \bar{\theta}_n^t + \eta_t \theta_n^t; \\ & | \textbf{ C+CI: } x_n^{t+1} \leftarrow x_n^t - \beta_t \sum_{m \in \Omega_n^t} (x_n^t - x_n^t) - \alpha_t \text{clip}(x_n^t - \bar{\theta}_n^t, \gamma_t) \\ & \textbf{ end} \end{aligned}
```

end

Output: $\{x_n^T\}_{n\in[N]}$

Convergence

Define $\operatorname{dist}(x_n^t, \Theta) = \min_{\theta \in \Theta} |x_n^t - \theta|$.

Asymptotic convergence

Let $\alpha_t = \alpha_0(t+1)^{-\tau_1}$, $\beta_t = \beta_0(t+1)^{-\tau_2}$, $\gamma_t = \gamma_0(t+1)^{-\tau_3}$. Choose $0 < \tau_2 < \tau_1 < 1$, $\tau_3 < \min\{1 - \tau_1, \tau_4/2\}$. Then, we have for all $n \in [N]$, $\lim_{t \to \infty} (t+1)^{\tau_3} \mathrm{dist}(x_n^t, \Theta) = 0$ a.s.

- Take $\tau_1 = 0.5, \tau_2 = 0.3, \tau_3 = 0.4, \tau_4 = 0.9$, we obtain $O((t+1)^{-0.4})$ convergence rate.
- Consensus error decays faster at $O\left((t+1)^{-(\tau_1-\tau_2+\tau_3)}\right)$ a.s.
- The theorem holds for every $\tau_3 < \min\{1 \tau_1, \tau_4/2\}$.
- Since $0 < \tau_4 < 1$, best guaranteed rate is near $O(\sqrt{t})$.

Experiments: networks

Two geometric random graphs with 40 nodes.

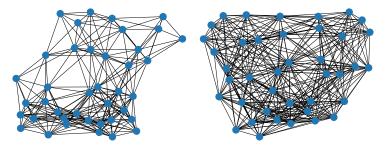


Figure: Graph 1

Figure: Graph 2

Experiments: τ_1, τ_4

Data setup: Graph 2 with dropout 0.1. $\theta_n = 5n$, $v_n = 50/(t+1)$, $w_n^t \sim \mathcal{N}(0,4)$, $\alpha_t = (t+1)^{-\tau_1}$, $\beta_t = 0.1(t+1)^{-\tau_2}$, $\gamma_t = 20(t+1)^{-\tau_3}$, $\eta_t = 10(t+1)^{-\tau_4}$.

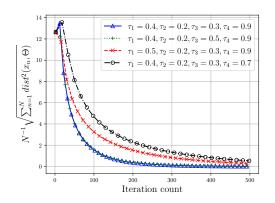


Figure: Tuning τ_1 and τ_4 .

Experiments: τ_2, τ_3

Fix (variance reduction rate) $\tau_4 = 0.9$.

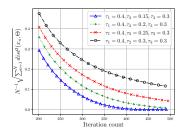


Figure: Tuning τ_2 .

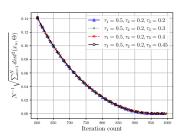


Figure: Tuning τ_3 .

Experiments: clipping vs sign

Fix $\tau_4 = 0.9$, and replace $\alpha_t \text{clip}(x_n^t - \bar{\theta}_n^t, \gamma_t)$ with $\alpha_t \gamma_t \text{sign}(x_n^t - \bar{\theta}_n^t)$.

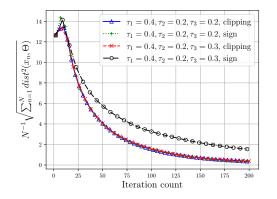


Figure: Clipped innovations vs signed innovations

Experiments: connectivity

Experiments on networks with different connectivity, $\lambda_2(L_1) \approx 1.8$, $\lambda_2(L_2) \approx 7.2$.

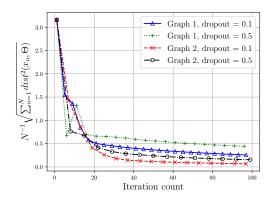


Figure: Experiments in different connectivities

Experiments: summary

- As suggested by the theorem: τ_1, τ_4 determines the convergence rates.
- Empirical findings: convergence rates are affected by τ_2 , and better connectivity accelerates convergence.

Discussions

Discussions

Conclusions:

- Proved median consensus for dynamic observations in random networks.
- Demonstrated effectiveness and illustrated parameters on synthetic data.

Directions:

- Understand the difference between *clipped* and *signed innovations*.
- Understand how the connectivity affects the convergence rate.
- Can we use this algorithm to robustify other decentralized algorithms?

Questions, comments, suggestions?